
May 22, 2008 11:5 WSPC/APJOR 00169.tex

Asia-Pacific Journal of Operational Research
Vol. 25, No. 2 (2008) 135–150
c© World Scientific Publishing Co. & Operational Research Society of Singapore

ON SOLVING SHORTEST PATHS WITH A LEAST-SQUARES
PRIMAL-DUAL ALGORITHM

I.-LIN WANG

Department of Industrial and Information Management
National Cheng Kung University, Tainan, Taiwan

ilinwang@mail.ncku.edu.tw

Received 15 August 2005
Accepted 17 July 2007

Recently a new least-squares primal-dual (LSPD) algorithm, that is impervious to degen-
eracy, has effectively been applied to solving linear programming problems by Barnes
et al., 2002. In this paper, we show an application of LSPD to shortest path problems
with nonnegative arc length is equivalent to the Dijkstra’s algorithm. We also compare
the LSPD algorithm with the conventional primal-dual algorithm in solving shortest

path problems and show their difference due to degeneracy in solving the 1-1 shortest
path problems.

Keywords: Least-squares; primal-dual algorithm; shortest path; Dijkstra’s algorithm.

1. Introduction

The least-squares primal-dual algorithm (LSPD) (Barnes et al., 2002) is a primal-
dual algorithm for solving LPs. Instead of minimizing the sum of the absolute
infeasibility in the constraints when solving the restricted primal problem (RPP),
as does the original primal-dual algorithm (PD), LSPD tries to minimize the sum
of the squares of the infeasibility.

In particular, to solve an LP:

min cx

s.t. Hx = b, x ≥ 0

with an initial feasible dual solution π, LSPD maintains complementary slackness
conditions by seeking solutions to a quadratic RPP which is a non-negative least-
squares problem (NNLS):

min ‖b − Ex‖2 (1.1)

s.t. x ≥ 0

where E = {H·j : πH·j = cj}. Using the solution x∗ to NNLS, LSPD identifies
a dual improving direction s∗ = b−Ex∗ and calculates the step size θ to obtain

135

May 22, 2008 11:5 WSPC/APJOR 00169.tex

136 I.-L. Wang

an improved dual solution π + θs∗. LSPD then identifies new column set E using
the updated dual solutions. These procedures are repeated until s∗ = 0, which
means primal feasibility (and thus optimality) has been attained. Solving NNLS
usually requires the solving of normal equations ET Ex = ET b by Cholesky or QR
factorizations. When solving min-cost network flow problems, the normal equations
can be solved through a specialized combinatorial implementation of LSPD (see
Gopalakrishnan, 2002; Barnes et al., 2005) without any matrix inversion procedures.

LSPD improves the dual solution in a nondegenerate way shown to be more
efficient than the Hungarian method (a PD algorithm) in solving assignment prob-
lems (Barnes et al., 2005). Thus LSPD is more efficient than PD for this special
class of network flow problems. In this paper, we consider another class of net-
work flow problems, the shortest path problems with nonnegative arc lengths. We
propose a simplified LSPD implementation to solve ALL-1 shortest path problems
(ALL-1-SP) and 1-1 shortest path problems (1-1-SP) on graphs with nonnegative
arc lengths, where ALL-1-SP computes a shortest path tree from each node to a
specific sink node, and 1-1-SP computes a shortest path for an origin-destination
pair. Without loss of generality, in this paper, we assume the ALL-1-SP and 1-1-
SP are always primal feasible. These shortest path problems are usually solved by
Dijkstra’s algorithm (Dijkstra, 1959), which can also be viewed as an application
of PD (Padadimitriou and Steiglitz, 1982). We show our LSPD implementation is
identical to Dijkstra’s algorithm in the sense that both algorithms grow the same
shortest path, and give more insights into LSPD and PD for solving these shortest
path problems. In solving 1-1-SP, we show that PD may give degenerate pivots that
slows down its performance, while LSPD will always give the same nondegenerate
pivots as does by Dijkstra’s algorithm. Such a degeneracy effect of PD can also be
verified from our preliminary computational experiments.

The paper is organized as follows. In Sec. 2, we discuss how LSPD, PD and
Dijkstra’s algorithm solve ALL-1-SP and show their equivalence in solving ALL-
1-SP. Section 3 illustrates steps of LSPD in solving 1-1-SP and then compares it
with PD and Dijkstra’s algorithm. Section 4 provides computational evidence on
the degeneracy effect of PD in solving 1-1-SP. We give conclusions in Sec. 5.

2. Solving the ALL-1 Shortest Path Problem

For a digraph G = (N, A) with n nodes and m arcs where N and A denote the set
of nodes and arcs respectively, if we let cij be the length of arc (i, j), then we can
formulate an ALL-1-SP as an LP:

min
∑

(i,j)∈A

cijxij = ZP∗
ALL−1(x) (2.1)

s.t.
∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji = bi =

{
1, if i �= t

−(n − 1), if i = t
∀ i ∈ N (2.2)

xij ≥ 0 ∀ (i, j) ∈ A.

May 22, 2008 11:5 WSPC/APJOR 00169.tex

On Solving Shortest Paths with a Least-Squares Primal-Dual Algorithm 137

Specifically, the problem can be viewed as if every node other than t sends one
unit of flow to satisfy the demand (n − 1) of node t in a way that minimizes the
total transportation cost. The constraint coefficient matrix of (2.2) is the node-
arc incidence matrix of G, and contains a redundant constraint. Without loss of
generality, we can remove the last row of (2.2) to get a new coefficient matrix Ĥ

and obtain the following LP:

min cx = ZP∗
ALL−1(x) (ALL-1-Primal)

s.t. Ĥx = 1 ∀ i ∈ N\t (2.3)

x ≥ 0,

whose dual is

max
∑

i∈N\t

πi = ZD∗
ALL−1(π) (ALL-1-Dual)

s.t. πi − πj ≤ cij ∀ (i, j) ∈ A, i, j �= t (2.4)

πi ≤ cit ∀ (i, t) ∈ A (2.5)

−πj ≤ ctj ∀ (t, j) ∈ A. (2.6)

These LPs can be solved by the network simplex algorithm (Ahuja et al., 1993),
where a basis corresponds to a spanning tree, the dual variable πi for each node i

corresponds to a distance label from node i to node t (thus πt = 0), and the reduced
cost cπ

ij for each arc (i, j) is cij − πi + πj .
Given an initial feasible dual solution π (we can use π = 0 because cij ≥ 0 for

each arc (i, j)) for ALL-1-Dual, we first identify a set of admissible arcs, denoted
by Â = {(i, j) ∈ A : cπ

ij = 0}. Let Ĝ = (N, Â) denote the admissible graph, which
contains all the nodes in N but only arcs in Â. We call a node i an admissible node
if there exists a path from i to t in Ĝ, or i = t. Thus the admissible node set N̂ is
the connected component of Ĝ that contains t.

LSPD solves the restricted primal problem, which seeks the flow assignment x∗

on admissible graph Ĝ that minimizes the sum of squares of the node imbalance
(or slackness vector) δ = b − Êx bA:

min
∑

i∈N\t

δ2
i =

∑
i∈N\t

bi −
∑
a∈ bA

Êiaxa

2

(NNLS-RPP)

s.t. xa ≥ 0 ∀ a ∈ Â,

where Ê = {Ĥ·a : πĤ·a = ca, ∀ a ∈ A} corresponds to the arcs in Â. Note that
xa = 0 for each nonadmissible arc a ∈ A�Â.

Problem NNLS-RPP is an instance of NNLS and can be solved by the algorithm
of Leichner et al. (1993). LSPD uses the optimal imbalance δ∗ to NNLS-RPP to
improve π (see Gopalakrishnan, 2002; Barnes et al., 2005, for the proof). Here we

May 22, 2008 11:5 WSPC/APJOR 00169.tex

138 I.-L. Wang

Algorithm 2.1. LSPD-ALL-1
begin

Initialize: ∀ node i, πi := 0; add node t to N̂ ;
Identify admissible arc set Â and admissible node set N̂ ;

while
∣∣∣N̂ ∣∣∣ < n do

δ∗ = NNLS-ALL-1(Ĝ, N̂);
Let Ã = {(i, j) ∈ A : δ∗i > δ∗j }, θ = min

(i,j)∈ eA
{ cπ

ij

δ∗
i −δ∗

j
};

π = π + θδ∗;
Identify admissible arc set Â and admissible node set N̂ ;

end

Procedure NNLS-ALL-1(Ĝ, N̂)
begin

for i = 1 to n do

if node i ∈ N̂ then

δ∗i = 0;
else

δ∗i = 1;
return δ∗;

end

give a specialized implementation (Algorithm 2.1 LSPD-ALL-1) to solve ALL-1-SP.
It contains procedure NNLS-ALL-1 for solving NNLS-RPP.

Figure 1 illustrates how algorithm LSPD-ALL-1 solves an ALL-1 shortest path
problem.

Now we show that LSPD-ALL-1 correctly computes an ALL-1 shortest tree.

Theorem 2.1. The δ∗ computed by the procedure NNLS-ALL-1 solves problem
NNLS-RPP.

Proof. For each nonadmissible node, since it has no path of admissible arcs to
t, its optimal imbalance remains 1. On the other hand, each admissible node can
always ship its imbalance to t via uncapacitated admissible arcs so that its optimal
imbalance becomes zero. Therefore the δ∗ computed by procedure NNLS-ALL-1
corresponds to the optimal imbalance δ∗i for NNLS-RPP.

Lemma 2.1. Algorithm LSPD-ALL-1 solves the ALL-1 shortest path problem.

Proof. By Theorem 2.1, δ∗ solves quadratic RPP (i.e. NNLS-RPP), so δ∗ is a dual
ascent direction (Gopalakrishnan 2002; Barnes et al., 2002). LSPD-ALL-1 itera-
tively computes the step length θ to update dual variables π, identifies admissible

May 22, 2008 11:5 WSPC/APJOR 00169.tex

On Solving Shortest Paths with a Least-Squares Primal-Dual Algorithm 139

Fig. 1. A small ALL-1 shortest path example solved by algorithm LSPD-ALL-1.

arcs (i.e. columns), and solves NNLS-RPP. Assuming each node i ∈ N\t reaches t,
LSPD-ALL-1 gives the following remarks:

(a) δ∗i = 0, ∀i ∈ N̂ and δ∗i = 1, ∀i ∈ N\N̂ .
(b) Let N̂k denote the set of N̂ in the beginning of iteration k, then N̂k ⊆ N̂k+1

and |N̂k+1| ≥ |N̂k| + 1
(c) In at most n− 1 major iterations, the algorithm LSPD-ALL-1 terminates with

N̂ = N . Thus finally when
∑

i∈N\t δ∗2i vanishes, which means the primal fea-
sibility has been attained, and since the dual feasibility and complementary
slackness conditions are maintained during the whole procedure, LSPD-ALL-1
solves ALL-1-SP.

Now we compare algorithm LSPD-ALL-1 with the original primal-dual algo-
rithm to solve the ALL-1 shortest path problem. The only difference between
algorithm LSPD and PD is that they solve different RPPs. PD solves the

May 22, 2008 11:5 WSPC/APJOR 00169.tex

140 I.-L. Wang

following RPP:

min
∑

i∈N\t

δi =
∑

i∈N\t

1 −
∑
a∈ bA

Êiaxa

s.t. xa ≥ 0 ∀ a ∈ Â, δi ≥ 0 ∀ i ∈ N\t,

whose dual is

max
∑

i∈N\t

ρi (DRPP-ALL-1)

s.t. ρi ≤ ρj , ∀ (i, j) ∈ Â, i, j �= t

ρi ≤ 0, ∀ (i, t) ∈ Â

ρj ≥ 0, ∀ (t, j) ∈ Â

ρi ≤ 1, ∀ i ∈ N\t.

The optimal dual solution ρ∗ of DRPP-ALL-1 is used as a dual-ascent direction.
For each node i that cannot reach t along admissible arcs in Â (i.e. i is nonadmis-
sible), it is easy to observe that ρ∗i = 1. Also, if node i is admissible, that is, i = t

or there exists a path from i to t with intermediate nodes {i1, i2, i3, . . . , ik}, then
ρ∗i1 = ρ∗i2 = ρ∗i3 = · · · = ρ∗ik

= 0. In other words, PD will have ρ∗ = 0 for all the
admissible nodes, and ρ∗ = 1 for all the nonadmissible nodes. Thus the improving
direction ρ∗ obtained by the PD is identical to the one obtained by LSPD.

Therefore we can say that LSPD and PD are identical to each other in solving
ALL-1-SP since they produce the same improving direction and step length and
also construct the same restricted network Ĝ at each iteration.

Now let us compare LSPD and PD with Dijkstra’s algorithm. Since Dijkstra’s
algorithm is usually stated as a 1-ALL shortest path algorithm, for our convenience,
we construct a new graph G′′ = (N, A′′) by reversing all the arc directions of A

so that an ALL-1 shortest path problem on G to sink t becomes a 1-ALL shortest
problem from source t on G′′. Initialize a node set V as empty and its complement
V as the whole node set N . The distance label for each node i, denoted as d(i),
represents the distance from t to i in G′′. Define pred(j) = i if node i is the
predecessor of node j.

We say a node is permanently labeled if it is put into V . A node is labeled if
its distance label is finite. A node is temporarily labeled if it is labeled but not
permanently labeled.

Dijkstra’s algorithm starts by permanently labeling t, and then iteratively labels
temporary nodes with arcs from permanently labeled nodes. This is identical to
LSPD-ALL-1, which grows admissible nodes only from admissible nodes. In fact,
in every major iteration, the set of admissible nodes in LSPD-ALL-1 is the same
as the set of permanently labeled nodes in Dijkstra.

May 22, 2008 11:5 WSPC/APJOR 00169.tex

On Solving Shortest Paths with a Least-Squares Primal-Dual Algorithm 141

Algorithm 2.2. Dijkstra(G′′)
begin

Initialize: ∀ node i ∈ N\t, d(i) := ∞, pred(i) = −1;
d(t) := 0, pred(t) := 0; V := ∅, V := N ;

while |V | < n do

let i ∈ V be a node such that d(i) = min{d(j) : j ∈ V }
V := V ∪ {i}; V := V \{i}
for each (i, j) ∈ A′′ do

if d(j) > d(i) + cij then

d(j) := d(i) + cij ; pred(j) := i;
end

Theorem 2.2. Both algorithm Dijkstra and LSPD-ALL-1 choose the same node
to become permanently labeled (in Dijkstra) or admissible (in LSPD-ALL-1) in each
major iteration.

Proof. See Appendix.

From this discussion, we conclude that when solving the ALL-1 shortest path
problem with nonnegative arc lengths, all three algorithms, Dijkstra, LSPD-ALL-1,
and PD, will perform the same operations in each iteration. In fact, this result is
not surprising due to the nondegeneracy of the ALL-1-SP problem structure. In
this ALL-1 shortest path problem, each node other than t has supply 1 to send
to t. Thus in each iteration of LSPD and PD, the primal infeasibility will strictly
decrease since a new admissible node can always be discovered; hence each pivot is
always nondegenerate.

LSPD is an algorithm designed to take advantage of doing nondegenerate pivots
in each iteration. Therefore, in this special case it performs just as efficiently as the
other two algorithms. Next we will see that because the 1-1-SP does not have the
nondegenerate property, in general LSPD-1-1 does a better job than the original
PD algorithm.

3. Solving the 1-1 Shortest Path Problem

Unlike the ALL-1 shortest path problem which searches for a shortest path tree
rooted at node t, the 1-1 shortest path problem only asks for a shortest path from
node s to node t. It can be viewed as finding the minimum cost way of sending a unit
flow from s to t with the minimum cost via uncapacitated arcs. Its LP formulation
is similar to the ALL-1 formulation except now node imbalance vector b only has
two nonzeros: +1 for s, and −1 for t. Since an ALL-1-SP algorithm could be overkill
when solving a 1-1-SP, here we develop specialized LSPD and PD implementations
for solving 1-1-SP and then develop more insights into the behavior of LSPD, PD,
and Dijkstra’s algorithm.

May 22, 2008 11:5 WSPC/APJOR 00169.tex

142 I.-L. Wang

Again, we remove the redundant row corresponding to t in the LP formulation,
which gives us the following primal and dual formulations:

min cx = ZP∗
1−1(x) (1-1-Primal)

s.t. Ĥx =
{

1, if i = s

0, if i ∈ N\{s, t} ∀ i ∈ N\t (3.1)

x ≥ 0,

whose dual is

max πs = ZD∗
1−1(π) (1-1-Dual)

s.t. πi − πj ≤ cij , ∀ (i, j) ∈ A, i, j �= t (3.2)

πi ≤ cit, ∀ (i, t) ∈ A (3.3)

−πj ≤ ctj , ∀ (t, j) ∈ A (3.4)

Here the right-hand-side of (3.1) only contains one nonzero (+1 for node s).
This makes the dual objective ZD∗

1−1(π) differ from that of ALL-1-SP, ZD∗
ALL−1(π),

in which ZD∗
1−1(π) maximizes only πs while ZD∗

ALL−1(π) maximizes the sum∑
i∈N\t πi.
First, we redefine an admissible node as a node that is reachable from s only

via admissible arcs. We give a new procedure NNLS-1-1 to solve NNLS-RPP in
our 1-1 shortest path algorithm, LSPD-1-1, as shown in Algorithm 3.1. Algorithm
LSPD-1-1 can be remarked as shown in Algorithm 3.1.

Now let us show that LSPD-1-1 correctly computes the shortest path from
s to t.

Theorem 3.1. The δ∗ computed by the procedure NNLS-1-1 solves problem
NNLS-RPP.

Proof. NNLS-RPP is a quadratic programming problem. If we relax the nonnega-
tivity constraints, it is a least-squares problem which can be solved by solving the
normal equation ÊT Êx∗ = ÊT b. In other words, ÊT δ∗ = ÊT (b − Êx∗) = 0. Note
that each row of ÊT contains only two nonzero entries (i.e. +1 and −1) which repre-
sent an admissible arc. In other words, ÊT δ∗ = 0 implies δ∗i = δ∗j for each admissible
arc (i, j) which implies all admissible nodes have the same optimal imbalance δ∗

since (N̂ , Â) is connected. Since the total system imbalance is 1 (from the source s),
the optimal least-squares solution δ∗i for NNLS-RPP will be 1

| bN| for each admissible

node i. Using the optimal imbalance δ∗, it is easy to compute the unique optimal arc
flow x∗ and verify that x∗ ≥ 0 by traversing nodes on the component that contains
the source node s (For more details in the application of LSPD on network prob-
lems, see Gopalakrishnan (2002); Barnes et al. (2005)). Thus the optimal imbalance
δ∗, using the procedure NNLS-1-1, solves NNLS-RPP.

May 22, 2008 11:5 WSPC/APJOR 00169.tex

On Solving Shortest Paths with a Least-Squares Primal-Dual Algorithm 143

Algorithm 3.1. LSPD-1-1
begin

Initialize: ∀ node i, πi := 0 ; add node s to N̂ ;
Identify admissible arc set Â and admissible node set N̂ ;

while node t /∈ N̂ do

δ∗ = NNLS-1-1(Ĝ, N̂);
Let Ã = {(i, j) ∈ A : δ∗i > δ∗j }, θ = min

(i,j)∈ eA
{ cπ

ij

δ∗
i −δ∗

j
};

π = π + θδ∗;
Identify admissible arc set Â and admissible node set N̂ ;

end

Procedure NNLS-1-1(Ĝ, N̂)
begin

for i = 1 to n do

if node i ∈ N̂ then

δ∗i = 1

| bN | ;
else

δ∗i = 0;
return δ∗;

end

Lemma 3.1. Algorithm LSPD-1-1 solves the 1-1 shortest path problem from s to t.

Proof. Using Theorem 3.1, δ∗ solves NNLS-RPP. δ∗ is a dual ascent direction
(Gopalakrishnan, 2002; Barnes et al., 2002). LSPD-1-1 iteratively computes the
step length θ to update dual variables π, identifies admissible arcs (i.e. columns),
and solves NNLS-RPP. Assuming node s reaches t, LSPD-1-1 gives the following
remarks:

(a) δ∗i = 1

| bN| , ∀ i ∈ N̂ and δ∗i = 0, ∀ i ∈ N\N̂ .

(b) Let N̂k denote the admissible nodes set obtained in the beginning of iteration
k. Then N̂k ⊆ N̂k+1 and |N̂k+1| ≥ |N̂k| + 1.

(c) In at most n − 1 major iterations, the algorithm LSPD-1-1 terminates when
node t becomes admissible. Then, s can send its unit imbalance to t via some
path composed only by admissible arcs so that the total imbalance over all
nodes becomes 0.

Thus finally when
∑

i∈N\t δ∗2i vanishes, which means the primal feasibility has been
attained, and since the dual feasibility and complementary slackness conditions are
maintained during the whole procedure, LSPD-1-1 solves the 1-1 shortest path
problem from s to t.

May 22, 2008 11:5 WSPC/APJOR 00169.tex

144 I.-L. Wang

Fig. 2. A small 1-1 shortest path example solved by algorithm LSPD-1-1.

Figure 2 illustrates how algorithm LSPD-1-1 solves a 1-1 shortest path problem.
Intuitively, we can view this algorithm as the following: starting from source s,
LSPD-1-1 tries to reach t by growing the set of admissible nodes. The algorithm
keeps propagating the unit imbalance along all the admissible arcs so that the unit
imbalance will be equally distributed to each admissible node before t becomes
admissible. Once t becomes admissible, all imbalance flows to t so that the optimal
system imbalance δ∗ becomes 0. Then the algorithm is finished.

To further speed up algorithm LSPD-1-1, we observe that for each admis-
sible node k, δ∗k = 1

| bN| and θδ∗k = min(i,j)∈A,δ∗
i >δ∗

j
{ cij−πi+πj

δ∗
i −δ∗

j
} · 1

| bN | =

min(i,j)∈A,δ∗
i = 1

|cN| ,δ
∗
j =0{ cij−πi+πj

1
|cN|

} · 1

| bN | = min(i,j)∈A,δ∗
i >δ∗

j
{cij −πi +πj} ·1. Thus we

can use θ̂ = min(i,j)∈A,δ∗
i >δ∗

j
{cij − πi + πj} and δ̂k = 1 to update πk = πk + θ̂δ̂k

since θδ∗k = θ̂δ̂k. This modification achieves the same objective using simpler com-
putations.

May 22, 2008 11:5 WSPC/APJOR 00169.tex

On Solving Shortest Paths with a Least-Squares Primal-Dual Algorithm 145

When the original PD algorithm solves the 1-1 shortest path problem, the primal
RPP formulation is as follows:

min
∑

i∈N\t

δi =
∑

i∈N\t

(bi −
∑
a∈ bA

Êiaxa) (RPP-1-1)

s.t. bi =

{
1, if i = s

0, if i ∈ N\{s, t} , ∀ i ∈ N\t

xa ≥ 0 ∀ a ∈ Â, δi ≥ 0 ∀ i ∈ N\t,
whose dual is

max ρs (DRPP-1-1)

s.t. ρi ≤ ρj , ∀ (i, j) ∈ Â, i, j �= t

ρi,≤ 0, ∀ (i, t) ∈ Â

ρj ,≥ 0, ∀ (t, j) ∈ Â

ρi,≤ 1, ∀ i ∈ N\t.
Unlike when solving the ALL-1 shortest path problem, the original PD algorithm

will have degenerate pivots when solving RPP-1-1, which is a major difference from
the LSPD algorithm since the LSPD algorithm guarantees nondegenerate pivots at
every iteration.

If s and t are not adjacent and all the arc costs are strictly positive, we start the
algorithm with π = 0 which makes Â empty in the first iteration. Then the optimal
solution for DRPP-1-1 in the first iteration will be ρ∗s = 1, ρ∗i ≤ 1 ∀ i ∈ N\{s, t}.
That is, we are free to choose any ρ∗i as long as it does not exceed 1. This property of
multiple optimal dual solutions is due to the degeneracy of RPP-1-1. When we have
multiple choices to improve the dual solution π, there is no guarantee of improving
the objective of RPP-1-1 at any iteration. In fact, we may end up cycling or take a
long time to move out the degenerate primal solution.

To eliminate the uncertainty caused by primal degeneracy when solving RPP-
1-1, we have to choose the dual improving direction appropriately. One way is to
choose ρ∗i = 0 for nonadmissible nodes. Then, by the first constraint in DRPP-1-1,
admissible nodes will be forced to have ρ∗i = 1. This is because we want to maximize
ρs, and the best we can do is ρ∗s = 1. By doing so, we force all the nodes reachable
from s (i.e. admissible nodes) to have ρ∗i = 1. Thus if the original PD algorithm
chooses ρ∗i = 0 for each nonadmissible node and ρ∗i = 1 for each admissible node,
then it will have chosen the same admissible arcs and nodes as LSPD-1-1 in each
iteration.

Dijkstra’s algorithm for the 1-1 shortest path problem is the same as the ALL-1
case, except that it terminates as soon as the sink t is permanently labeled. Here we
explain that LSPD-1-1 performs the same operations as Dijkstra’s algorithm does.

May 22, 2008 11:5 WSPC/APJOR 00169.tex

146 I.-L. Wang

Algorithm LSPD-1-1 starts at source node s, and then identifies admissible arcs
to grow the set of admissible nodes. This is the same as Dijkstra’s algorithm. If
both algorithms choose the same node in each iteration, the admissible node set N̂

in the LSPD-1-1 algorithm will be equivalent to the permanently labeled node set
V in Dijkstra’s algorithm.

The following proposition explains that both algorithms choose the same nodes
in every major iteration.

Theorem 3.2. Both Dijkstra and LSPD-1-1 choose the same node to become per-
manently labeled (in Dijkstra) or admissible (in LSPD-1-1) in each major iteration.

Proof. See Appendix.

Thus in LSPD-1-1, πi represents the shortest distance between an admissible
node i and the most recent admissible node in V k, while in Dijkstra’s algorithm
d(i) represents the shortest distance between s and i. In other words, d(i) = πs −πi

for any admissible node i. Therefore, when t becomes admissible, d(t) = πs.
From this discussion, we can see that when solving the 1-1 shortest path prob-

lem with nonnegative arc lengths, Dijkstra and LSPD-1-1 algorithms are, in fact,
identical to each other. The original PD algorithm will face the problem of primal
degeneracy when solving the RPP-1-1. However, if we choose the improving dual
direction intelligently (i.e. ρ∗ = 0 for all nonadmissible nodes and ρ∗ = 1 for all
admissible nodes), the original PD algorithm will perform the same operations as
the LSPD-1-1 algorithm. Next section compares the computational performance of
LSPD-1-1 and PD-1-1 algorithms, and shows the effect of degeneracy.

4. Preliminary Computational Experiments

We have shown that all three algorithms, Dijkstra, LSPD-ALL-1, and PD, perform
the same steps in solving ALL-1-SP problems, while the algorithm PD-1-1 may per-
form different steps due to degeneracy when compared with Dijkstra and LSPD-1-1
in solving 1-1-SP. To see how the degenerate pivots may affect the performance of
PD-1-1, here we conduct several computational experiments for algorithms LSPD-
1-1 and PD-1-1 in solving 1-1-SP on two families of artificial random networks,
SPGRID and SPRAND, written by Cherkassky et al. (1996). SPGRID generates
grid-like networks with X × Y grid nodes plus a super node. By changing X and
Y we can specify the grid shape to be square (X = Y), wide or long (X �= Y). We
specify the degree to be 3 and arc lengths to be ranged from 0 to 100, and gen-
erate four families of random grid networks where X and Y equal to 16 or 32. On
the other hand, SPRAND first constructs a Hamiltonian cycle, and then adds arcs
with distinct random end points. Here we set the length of the arcs to be uniformly
chosen from the interval [0, 104]. All the algorithms and network generators are C
codes compiled by GNU C compiler on an Intel Pentium 4 machine with 3.20GHz
CPU and 1GB RAM.

May 22, 2008 11:5 WSPC/APJOR 00169.tex

On Solving Shortest Paths with a Least-Squares Primal-Dual Algorithm 147

Table 1. Comparison of algorithms LSPD-1-1 and PD-1-1 on
SPGRID random networks.

Grid [deg] Time (ms) P-D Iterations

LSPD-1-1 PD-1-1 LSPD-1-1 PD-1-1

16 × 16 [3] 2.37 9.30 234 379
16 × 32 [3] 8.19 32.51 401 688
32 × 16 [3] 6.32 34.06 302 706
32 × 32 [3] 22.18 114.28 542 1228

Table 2. Comparison of algorithms LSPD-1-1 and PD-1-1 on
SPRAND random networks.

|N | [deg] Time (ms) P-D Iterations

LSPD-1-1 PD-1-1 LSPD-1-1 PD-1-1

256 [4] 2.11 6.41 126 195
256 [16] 6.38 19.64 112 180
512 [4] 9.71 27.45 278 415
512 [16] 30.34 86.40 245 387
1024 [4] 31.88 99.41 458 756
1024 [16] 186.30 574.29 444 760

In order to catch the effect of degenerate pivots, we implement PD-1-1 in a way
that degenerate pivots may appear more often. In particular, instead of setting ρ∗ =
0 for all nonadmissible nodes as a nondegenerate pivot, we set such ρ∗ to be nonzero
random numbers feasible for DRPP-1-1. Our implementation will still improve the
dual solutions of 1-1-Dual, but is certainly different from the nondegenerate pivots.

We generate 10 random networks for each network family, and solve several
1-1-SP problems for each random network by choosing different origins and desti-
nations. The average running time as well as the number of primal-dual iterations
by both algorithms are recorded for comparison. Both Tables 1 and 2 show that the
degenerate implementation of PD-1-1 does spend more running time and conduct
more primal-dual iterations to converge to the optimal solution, which verifies our
expectation on the advantage of nondegenerate pivots performed by LSPD-1-1.

Note that here we give a specialized degenerate PD-1-1 implementation for the
purpose to observe the effect of degenerate pivots. In practice, popular LP solvers
such as CPLEX or LINDO may give nondegenerate pivots (i.e. ρ∗ = 0 for all
nonadmissible nodes and ρ∗ = 1 for all admissible nodes) when solving RPP-1-1,
due to its simple mathematical structure.

5. Conclusions

The LSPD algorithm is more efficient than the original PD algorithm in the sense
that it improves dual solutions in a nondegenerate way. When solving min-cost
network flow problems, specialized LSPD implementation can avoid matrix inver-
sion and performs efficient computation. Here we propose a more simplified LSPD

May 22, 2008 11:5 WSPC/APJOR 00169.tex

148 I.-L. Wang

implementation which is shown to have identical steps to Dijkstra’s algorithm for
solving both ALL-1 and 1-1 shortest path problems. The original PD algorithm, on
the other hand, is identical to the Dijkstra’s algorithm for solving the ALL-1 shortest
path problem, but only when we choose a specific dual improving direction (there
are multiple ones) so that it will be identical to the Dijkstra’s algorithm. The effect
of degenerate pivots may slow down the performance of the original PD algorithm,
as illustrated in our preliminary computational experiments, when compared with
LSPD algorithm in solving the 1-1 shortest path problems. Since Dijkstra’s algo-
rithm is considered to be one of the most efficient algorithms in solving shortest path
problems, this paper shows the potential of the LSPD algorithm and also provides
more insights into the difference between the LSPD and the original PD algorithms.

Acknowledgments

I.-Lin Wang was partially supported by the National Science Council of Taiwan
under Grant NSC93-2213-E006-096.

References

Ahuja, R, T Magnanti and J Orlin (1993). Network Flows: Theory, Algorithms and Appli-
cations. Englewood Cliffs, NJ: Prentice Hall.

Barnes, E, V Chen, B Gopalakrishnan and E Johnson (2002). A least-squares primal-dual
algorithm for solving linear programming problems. Operations Research Letters,
30(5), 289–294.

Barnes, E, B Gopalakrishnan, E Johnson and J Sokol (2005). A least-squares network flow
algorithm. in prepartion.

Cherkassky, B, A Goldberg and T Radzik (1996). Shortest paths algorithms: theory and
experimental evaluation. Mathematical Programming, 73(2), 129–174.

Dijkstra, E (1959). A note on two problems in connection with graphs. Numerische Math-
ematik, 1, 269–271.

Gopalakrishnan, B, (2002). Least-Squares Methods in Linear Programming. Ph.D. thesis,
School of Industrial and Systems Engineering, Georgia Institute of Technology.

Leichner, S, G Dantzig and J Davis (1993). A strictly improving linear programming phase
i algorithm. Annals of Operations Research, 46–47(1–4), 409–430.

Padadimitriou, C and K Steiglitz (1982). Combinatorial Optimization: Algorithms and
Complexity. Englewood Cliffs, NJ, Prentice-Hall.

Appendix

Proof of Theorem 2.2.. We already know that both algorithms start at the
same node t. In LSPD-ALL-1, we will identify an admissible node j1 by identify-
ing the admissible arc (j1, t) such that (j1, t) = argmin(j,t)∈A,δ∗

j >δ∗
t
{ cjt−πi+πj

δ∗
j −δ∗

t
} =

argmin(j,t)∈A{cjt}. The second equality holds because δ∗j = 1, δ∗t = 0, and π = 0
in the first iteration. This is the same as Dijkstra’s algorithm in the first iteration.

Assume both algorithms have the same set of admissible (or permanently
labeled) nodes V k in the beginning of the kth major iteration. Algorithm
LSPD-ALL-1 will choose an admissible arc (ik, jr) such that (ik, jr) =

May 22, 2008 11:5 WSPC/APJOR 00169.tex

On Solving Shortest Paths with a Least-Squares Primal-Dual Algorithm 149

arg min(i,j)∈A,δ∗
i >δ∗

j
{ cij−πi+πj

δ∗
i −δ∗

j
} = argmin(i,j)∈A,j∈V k,i/∈V k{cij +πj}. Again, the sec-

ond equality holds because δ∗j = 0 for each j ∈ V k, and δ∗i = 1, πi = 0 for
each i /∈ V k. If node j is admissible in the kth iteration, let j → jh → · · ·
→ j2 → j1 → t denote the path from j to t. Then we can calculate πj =
cjjh

+ · · · + cj2j1 + cj1t since πt = 0 and all the arcs along this path are admis-
sible thus having zero reduced cost. So, (ik, jr) = argmin(i,j)∈A,j∈V k,i/∈V k{cij +
πj} = argmin(i,j)∈A,j∈V k,i/∈V k{∑(p,q)∈path{i→j→jh→···→j1→t} cpq}. Therefore, in
the beginning of the (k + 1)st major iteration, node ik becomes admissible with
πik

=
∑

(p,q)∈path{ik→jr→jr−1→···→j1→t} cpq.
Dijkstra’s algorithm in the kth iteration will choose the node reachable from

V k with the minimum distance label. That is, one should choose node ik reach-
able from a permanent labeled node jr such that d(ik) = min(j,i)∈A,j∈V k d(i) =
min(j,i)∈A,j∈V k{d(j) + cji}. Let t → j1 → j2 → · · · → jp → j denote the path
from t to a permanently labeled node j. Since j is permanently labeled, d(j) =∑

(p,q)∈path{j→jp→···→j2→j1→t} cpq. Therefore, node ik will become permanently
labeled with distance label d(ik) =

∑
(p,q)∈path{t→j1→j2→···→jr→ik} cpq in the

(k + 1)st major iteration.
Therefore, these two algorithms perform the same operation to get the same

shortest distance label for the newly permanently labeled (or admissible) node.

Proof of Theorem 3.2 We already know that both algorithms start at s. In
LSPD-1-1, we will identify an admissible node i1 by identifying the admissible arc
(s, i1) such that (s, i1) = arg min(s,i)∈A,δ∗

s >δ∗
i
{ csi−πs+πi

δ∗
s−δ∗

i
} = arg min(s,i)∈A{csi}. The

second equality holds because δ∗s = 1, δ∗i = 0, and π = 0 in the first iteration. This
is the same as Dijkstra’s algorithm in the first iteration.

Assume both algorithms have the same set of admissible (or permanently
labeled) nodes V k in the beginning of the kth major iteration. Algorithm LSPD-1-
1 will choose an arc (ir, jk) such that (ir, jk) = arg min(i,j)∈A,δ∗

i >δ∗
j
{ cij−πi+πj

δ∗
i −δ∗

j
} =

arg min(i,j)∈A,i∈V k,j /∈V k{cij − πi}. Again, the second equality holds because δ∗i = 1
for each i ∈ V k, and δ∗j = 0, πj = 0 for each j /∈ V k If node i is admis-
sible in the kth iteration, let s → i1 → i2 → · · · → ip → i denote the
path from s to i. Then we can calculate πs = csi1 + ci1i2 + · · · + cipi + πi

since all the arcs along this path are admissible and thus have zero reduced
cost. That is, −πi =

∑
(p,q)∈path{s→i1→i2···→i} cpq − πs for each admissible node

i. So, (ir, jk) = arg min(i,j)∈A,i∈V k,j /∈V k{cij − πi} = argmin(i,j)∈A,i∈V k,j /∈V k

{∑(p,q)∈path{s→i1→i2···→i→j} cpq − πs} = argmin(i,j)∈A,i∈V k,j /∈V k

{∑(p,q)∈path{s→i1→i2···→i→j} cpq}. The last equality holds since πs is fixed when
we compare all the arcs (i, j) ∈ A, i ∈ V k, j /∈ V k.

Therefore, in the beginning of the (k + 1)st major iteration, node jk becomes
admissible with πjk

= 0, and πs =
∑

(p,q)∈path{s→i1→i2···→ir→jk} cpq.
Dijkstra’s algorithm in the kth iteration will choose a node reachable from

V k with a minimum distance label. That is, it chooses a node jk reachable

May 22, 2008 11:5 WSPC/APJOR 00169.tex

150 I.-L. Wang

from some permanent node ir such that d(jk) = min(i,j)∈A,i∈V k,j /∈V k d(j) =
min(i,j)∈A,i∈V k,j /∈V k{d(i) + cij}. Let s → i1 → i2 → · · · → ip → i

denote the path from s to a permanently labeled node i. Since i is perma-
nently labeled, d(i) =

∑
(p,q)∈path{s→i1→i2···→ip→i} cpq. Therefore, node jk will

become permanently labeled because d(jk) = min(i,j)∈A,i∈V k,j /∈V k{d(i) + cij} =
min(i,j)∈A,i∈V k,j /∈V k{∑(p,q)∈path{s→i1→i2···→i→j} cpq}. That is, node jk will become
permanently labeled in the (k + 1)st major iteration and will have distance label
d(jk) =

∑
(p,q)∈path{s→i1→i2···→ir→jk} cpq.

It is easy to see that these two algorithms perform the same operation to identify
the same newly permanently labeled (or admissible) node.

I.-Lin Wang is an Associate Professor in the Department of Industrial & Informa-
tion Management, National Cheng Kung University (IIM, NCKU), Tainan, Taiwan
(since 2003). From 1996 to 1997, He served as a Foreign Researcher, in the Com-
munication Network System Research Lab, Fujitsu Lab. Ltd, Kawasaki, Japan.
He received Bachelor degree from the Department of Aeronautical & Astronauti-
cal Engineering, National Cheng Kung University (IAA, NCKU), Tainan, Taiwan
in 1991 and Master of Science from the Operations Research Center, MIT (ORC,
MIT), Cambridge, USA in 1996, and also Ph.D. from the School of Industrial &
Systems Engineering, Georgia Institute of Technology (ISyE, GA Tech), Atlanta,
USA in 2003. His research interests include, Network Optimization, or related top-
ics, Logistics Supply Chain Management, and Bioinformatics. He has published
articles in journals such as Transportation Science, Journal of Industrial and Man-
agement Optimization, IEEE Transactions on Electronics Packaging Manufacturing
and International Journal of Integrated Supply Management.

